Diffusion in porous crystalline materials.

نویسنده

  • Rajamani Krishna
چکیده

The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imparting amphiphobicity on single-crystalline porous materials

The sophisticated control of surface wettability for target-specific applications has attracted widespread interest for use in a plethora of applications. Despite the recent advances in modification of non-porous materials, surface wettability control of porous materials, particularly single crystalline, remains undeveloped. Here we contribute a general method to impart amphiphobicity on single...

متن کامل

Unveiling the environment-dependent mechanical properties of porous polypropylene separators

Porous polypropylene (PP) is commonly used as separator materials for lithium ion batteries (LIB). Its mechanical properties, especially critical for abuse tolerance and durability of LIB, are subject to change in different environments. To capture the mechanical responses of a porous PP separator, its microstructure was mapped into separate atomistic models of bulk crystalline phases and orien...

متن کامل

Aluminum-induced Crystallization of Semiconductor Thin Films

Thin film materials of the semiconductors, such as silicon (Si), germanium (Ge) or their alloys, are turning into the most promising functional materials in the energy technology. However, the morphologies of these semiconductor thin films must be varied to be suitable for the different applications, e.g. a large-grained layer as the seed layer of thin film solar cells, a porous structure for a...

متن کامل

Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study.

Retaining the high energy density of rechargeable lithium ion batteries depends critically on the cycle stability of microstructures in electrode materials. We report the reversible formation of nanoporosity in individual germanium nanowires during lithiation-delithiation cycling by in situ transmission electron microscopy. Upon lithium insertion, the initial crystalline Ge underwent a two-step...

متن کامل

Monodisperse porous nanodiscs with fluorescent and crystalline wall structure.

We report a facile solution process to synthesize monodisperse porous nanodiscs through confined molecular self-assembly of surfactants and ZnTPyP. The nanodiscs exhibit trimodal pores with fluorescent and crystalline wall structures, and are potentially important for sorption and separation, sensors, catalytic materials, electrode materials, etc.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical Society reviews

دوره 41 8  شماره 

صفحات  -

تاریخ انتشار 2012